

Catalyst design for selective oxidation with molecular oxygen by metal-complex attachment

Mizuki Tada*, Rajaram Bal, Yasuhiro Iwasawa

Department of Chemistry, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan Available online 19 June 2006

Abstract

We have prepared novel metal-ensemble catalysts by chemical attachment of metal-complex precursors, N-interstitial Re $_{10}$ cluster supported on HZSM-5 and chiral self-dimerized V-dimer on SiO $_2$, which are active and highly selective for selective oxidation with molecular oxygen. The Re $_{10}(N)_2$ /HZSM-5 catalyst exhibited 87.7% (steady-state reaction) and 93.9% (pulse reaction) selectivity for direct phenol synthesis from benzene with molecular oxygen. The structures of active metal species were characterized by EXAFS, TPD and DFT calculations. The chiral self-dimerized V-dimer catalyst was found to be the first heterogeneous catalyst for the asymmetric oxidative coupling of 2-naphthol with molecular oxygen, which exhibited 100% selectivity and 90% enantioselectivity.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Selective oxidation; Molecular oxygen; Phenol synthesis; Re cluster; Chiral self-dimerization

1. Introduction

Selective oxidation with molecular oxygen has received much attention to date, but it is still difficult to activate molecular oxygen, while suppressing undesirable combustion under oxidation reaction conditions. While it has been recognized that the design of catalytically active structures and ensembles and the control of their reactivity based on in situ characterization are critical in achieving high catalytic performance with good selectivity, these issues, which are a serious challenge to particularly selective oxidation catalysis, have yet to be adequately addressed. We have succeeded in preparing highly selective oxidation catalysts for valuable selective oxidation with molecular oxygen by metal-complex attachment on oxide supports choosing appropriate metalcomplex precursors. The present study emphasizes novel phenomena and concepts for the design of new catalytic structures for selective oxidation with molecular oxygen, presenting two examples we have recently discovered: Ninterstitial Re₁₀ cluster for direct phenol synthesis from benzene [1] and chiral self-dimerized V catalysts for asymmetric oxidative coupling of 2-naphthol [2,3].

2. Experimental

2.1. Preparation of N-interstitial Re₁₀ cluster supported on HZSM-5

HZSM-5 with a SiO₂/Al₂O₃ ratio of 19 was synthesized [4] and other zeolites were brought from TOSOH. The supported Re catalysts were prepared by a conventional impregnation method using NH₄ReO₄ and a chemical vapor deposition (CVD) method using CH₃ReO₃ (MTO). In the CVD procedure, ZSM-5, Beta, USY and Mordenite were pressed and sieved to 355–710 μm granules and calcined at 873 K for 2 h and then the zeolites were further treated at 673 K for 0.5 h under vacuum. Next, heating the whole apparatus at 333 K, the zeolites were exposed to MTO vapor for 14 h. The impregnation and CVD catalysts were pretreated in a He flow at 673 K for 1 h and cooled in a He flow before use as catalysts.

2.2. Preparation of chiral self-dimerized V-dimer on SiO₂

V-monomer precursors with Schiff-base ligands were synthesized by a reported method [5]. The V-monomer precursors were dissolved in dehydrated ethanol and impregnated with SiO₂ (Degussa; Aerosil 200), Al₂O₃ (Degussa; Allon C) and TiO₂ (Degussa; P-25) under nitrogen atmosphere. After

^{*} Corresponding author. Fax: +81 3 5841 4364. E-mail address: mtada@chem.s.u-tokyo.ac.jp (M. Tada).

stirring for 1 h at ambient temperature, the solvent was evaporated and the sample was dried under vacuum for 7 h. V loadings were in the range of 0.3–3.4 wt%, which were determined by XRF.

2.3. Catalyst characterization

XAFS spectra at V K-edge and Re $L_{\rm III}$ -edge were measured in a transmission mode at 15 K at the BL-9A and BL-9C stations of the Photon Factory in the Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK-IMSS-PF). X-rays from the storage ring were monochromatized by a Si(1 1 1) double-crystals monochrometor and higher harmonics were removed by Rh-coated cylindrically bent mirrors. The EXAFS spectra were analyzed with the UWXAFS package [6]. Background was subtracted by the AUTOBK program and the obtained k^3 -weighted EXAFS data were Fourier transformed into R-space. Phase shifts and backscattering amplitudes were calculated by the FEFF8 code [7].

ESR X-band spectra for the supported V catalysts (0.3-3.4 wt%) were recorded on JEOL JES-RE2X equipment at 6 K. The ESR spectrum was measured under vacuum and then measured in the presence of O₂. The adsorption of oxygen was performed twice after evacuation at 293 K. The changes in ESR spectra were examined for both forbidden half-field $(|\Delta Ms| = 2)$ and allowed $(|\Delta Ms| = 1)$ transitions. The interatomic distance of V-V was evaluated by the relative intensities of a half-field transition ($|\Delta Ms| = 2$) to a main ($|\Delta Ms| = 1$) transition, which are inversely proportional to the sixth power of r (r: V–V distance) [8]. Two V-dimers with O=V···V=O conformations (two V=O are directed opposite), K₄[VO(cit)]₂ 6H₂O (cit: citrate) with 0.3301 nm of V-V distance [9] and $Na_4[VO(d-tart)]_2$ (tart: tartrate) with 0.435 nm of V–V distance [10,11] were used as references for the determination of the coefficient of the inverse proportion. The V-V distances of the supported V catalysts before and after the coordination of 2naphthol were estimated after O2 adsorption.

2.4. Selective oxidation with benzene and molecular oxygen to phenol

The selective catalytic reactions were conducted in a fixed-bed down-flow reactor by charging 0.2 g of a catalyst. A typical composition of the reaction gases was $\text{He:O_2:NH_3:ben-zene} = 46.4:12.0:35.0:6.6 \text{ (mol\%)}$ and W/F was typically 6.7 g_{cat} h mol^{-1} . The products were analyzed by two on-line GCs with a FID detector using a NEUTRABOND-1 column for hydrocarbons and with a TCD detector using a Unibeeds C column for inorganic materials. Pulse experiments were carried out using 0.1 g of a catalyst and the volume of each pulse was 0.42 ml.

2.5. The asymmetric oxidative coupling of 2-naphthol with molecular oxygen

The oxidative coupling of 2-naphthol was carried out on both homogeneous and heterogeneous V catalysts in the

temperature range of 263-293 K under O_2 atmosphere (101.3 kPa). The molar ratio of V-dimer to 2-naphthol was basically fixed to 1/36 and 5 ml of toluene or chloroform was used as solvents. The reaction in the absence of oxygen was also performed under nitrogen atmosphere.

3. Results and discussion

3.1. N-interstitial Re_{10} -cluster/HZSM-5 catalyst for direct phenol synthesis from benzene with molecular oxygen

Phenol is one of the most important chemicals and has been produced from benzene by the three-steps cumene process in industries, which is not only energy consuming but also less efficient, showing very low phenol yield and producing lots of by-products. Direct phenol synthesis from benzene is an alternative way to overcome these problems and O_2 [12–15], H_2O_2 [16,17], N_2O [18–25], $H_2 + O_2$ [26,27], air/CO [28] and O_2/H_2O [29] have been used as oxidants. Despite the good performances with N_2O and H_2O_2 as oxidants, any economically and environmentally favorable benzene- O_2 catalytic systems with high selectivity for phenol synthesis have not been discovered to date because molecular oxygen is hardly activated to selectively oxidize benzene to phenol.

We have succeeded in preparing HZSM-5-supported Recluster catalysts, which were active for the direct phenol synthesis with high phenol selectivity [15]. Nevertheless, selectivity of the benzene oxidation to phenol with O_2 reported to date has not exceeded 60% [14]. The prepared Re-cluster catalyst is tremendously selective (87.7% in the steady-state reaction and 93.9% in the pulse reaction) for the benzene oxidation with O_2 under coexisting NH_3 [1].

Table 1 shows the performances of the Re/zeolite catalysts for the selective oxidation of benzene with O2. A Re-CVD/ HZSM-5 catalyst ($SiO_2/Al_2O_3 = 19$) preferentially produced phenol with 87.7% selectivity in the presence of NH₃ (Table 1). No other liquid products were detected and only a by-product was gaseous CO₂. The activity and selectivity of the Re-CVD/HZSM-5 catalyst did not decrease for at least 6 h under the steady-state conditions. It is to be noted that the coexistence of NH₃ is indispensable for the selective oxidation. Neither benzene oxidation nor combustion proceeded in the absence of NH₃. The phenol formation rate and selectivity increased with increasing NH₃ pressure because the coexisting NH₃ produces active Re clusters as described hereinafter and reached maxima around 35-42 kPa of partial NH₃ pressure [1]. Excess ammonia decreased the rate and selectivity for the phenol synthesis by competitive adsorption against benzene and undesirable poisoning. The NH₃ pretreatment of the catalyst for longer than 1 h was required to generate the selective catalysis, indicating the formation of an active structure in situ under the catalytic reaction conditions in the presence of NH₃.

Impregnation and physically mixing catalysts were much less active and much less selective for the phenol synthesis (Table 1). The CVD catalyst was almost 18 times more active than the impregnation catalyst. In the physically mixing and

Table 1
Catalytic performances of Re/zeolite catalysts for the direct phenol synthesis from benzene with molecular oxygen at 553 K^a

Catalyst	SiO ₂ /Al ₂ O ₃	Method	Re/wt%	$TOF/10^{-5} s^{-1b}$	PhOH selec. (%) ^c
HZSM-5	19	_	_	Trace	0
Re/HZSM-5 ^d	19	CVD	0.58	Trace	0
Re/HZSM-5	19	CVD	0.58	65.6	87.7
Re/HZSM-5 ^e	19	CVD	0.58	51.8	85.6
Re/HZSM-5 ^f	19	CVD	2.2	83.8	82.4
Re/HZSM-5 ^g	19	CVD	0.58	74.6	93.9
Re/HZM-5 ^h	19	CVD	0.58	86.1	90.6
Re/HZSM-5	19	Imp. ⁱ	0.6	11.8	27.7
Re/HZSM-5	19	Phys. ^j	0.6	Trace	0
Re/HZSM-5 ^d	23.8	CVD	0.58	Trace	0
Re/HZSM-5	23.8	CVD	0.58	36.2	68.0
Re/HZSM-5	39.4	CVD	0.59	31.0	48.0
Re/H-Beta	37.1	CVD	0.53	18.5	12.0
Re/H-USY	29	CVD	0.60	Trace	0
Re/H-Mordenite	220	CVD	0.55	26.3	23.4
SiO ₂ -Al ₂ O ₃	19	_	0	0	0
Re/SiO ₂ -Al ₂ O ₃	19	Imp. ⁱ	1.2	trace	0

^a Catalyst = 0.20 g; $W/F = 6.7 \text{ g}_{cat} \text{ h} \text{ mol}^{-1}$; $He/O_2/NH_3/\text{benzene} = 46.4/12.0/35.0/6.6 \text{ (mol%)}$. The detailed carbon mass balance and material balance were examined in most of the experimental runs and the values were between 97 and 99%.

impregnation catalysts Re7+ precursors were transformed to partly aggregated and ill-defined Re species unlike active Re clusters in the CVD catalyst. The phenol selectivity highly depended on the structure, acid strength and SiO₂/Al₂O₃ ratio of zeolites as shown in Table 1. The decrease in the SiO₂/Al₂O₃ ratio caused large increases in the catalytic activity (TOF: $31.0 \times 10^{-5} \,\mathrm{s}^{-1}$ -65.6 × $10^{-5} \,\mathrm{s}^{-1}$) and the phenol selectivity (48.0-87.7%). The rate of phenol formation decreased in the order; HZSM-5 (SiO₂/Al₂O₃ = 19) > HZSM-5 (SiO₂/Al₂O₃ = 23.8) > HZSM-5 (SiO₂/Al₂O₃ = 39.4) \gg H-Mordenite > Hbeta > H-USY. Thus, HZSM-5 ($SiO_2/Al_2O_3 = 19$) among the employed zeolites is the most favorable support for the Re species. It is suggested that Al-OH in the HZSM-5 framework is a bonding site for active Re species. The phenol selectivity in the steady-state reaction decreased from 87.7 to 82.4% a little by increasing Re loading (0.58 \rightarrow 2.2 wt%) and W/F (6.7 \rightarrow 10.9 g_{cat} h mol⁻¹), while the conversion increased from 0.75% to 5.8% as shown in Table 1.

The Re L_{III} -edge EXAFS analysis revealed significant changes in the structure of supported Re species on HZSM-5 (Fig. 1). The NH₃ treatment of the Re/HZSM-5 prepared by CVD of MTO at the reaction temperature brought about the appearance of catalytic activity for the phenol synthesis. The phenol formation rate increased with an increase in the period of NH₃ (75 kPa) treatment at 553 K and reached a saturated value of 3.8 μ mol g_{cat}^{-1} s⁻¹ after the NH₃-treatment for 2 h, which indicates that the structural transformation to active Re species is completed by the 2 h-NH₃ treatment. The CN of Re-

Re bonds was 5.2 ± 0.3 at 0.276 ± 0.002 nm, demonstrating the formation of Re clusters. Assuming Re₆ octahedron as a cluster unit [30], the CN of Re–Re bonds indicates Re₁₀ clusters edge-shared with two Re₆ octahedra. Furthermore, it was found that the NH₃-treated Re-cluster catalyst released N₂ molecules at 685 K in TPD spectra. The number of encapsulated nitrogen atoms was 0.12 N₂/Re, which corresponds to be one nitrogen atom per a Re₆ octahedron. An NH₃-treated HZSM-5 without Re showed no N₂ desorption in TPD. The Re–N(O) bonds in the NH₃-treated Re-CVD/HZSM-5 catalyst were observed at 0.204 ± 0.001 nm (CN = 2.8 ± 0.3) and Re=O double bonds at 0.172 ± 0.001 nm (CN = 0.3 ± 0.2) were also observed by EXAFS [1]. DFT calculations for the Re clusters revealed that a nitrogen atom is located at the interstitial position of each Re₆ octahedral framework of a Re₁₀ cluster which is attached on the wall of a zeolite pore via Re-O bonds [1]. It is to be noted that the interstitial nitrogen atoms are the key element to stabilize the Re₁₀ clusters. The DFT-calculated structure of the Re cluster embedded in the pore of HZSM-5 is illustrated in Scheme 1.

The Re₁₀ clusters with interstitial nitrogen atoms were highly selective for the catalytic phenol synthesis as shown in Table 1. Benzene was immediately converted to phenol by a pulse of a mixture of benzene and O_2 on 0.1 g of the NH₃-pretreated catalyst. It is to be noted that the selective benzene oxidation with O_2 on the active Re₁₀ clusters proceeds without NH₃ with 93.9% selectivity. In the absence of O_2 , the Re clusters did not produce phenol, suggesting that the oxygen of

^b Consumed benzene/Re/s.

^c Phenol selectivity in carbon (%).

d In the absence of NH₃.

e $W/F = 5.2 \text{ g}_{\text{cat}} \text{ h mol}^{-1}$

^f $W/F = 10.9 \text{ g}_{cat} \text{ h mol}^{-1}$; He/O₂/NH₃/benzene = 46.4/12.0/35.0/6.6 (mol%).

^g Pulse reaction on the NH₃-pretreted catalyst (0.1 g); 1 pulse of benzene + O₂ (He/O₂/benzene = 81.4/12.0/6.6 (mol%)).

h Pulse reaction on the NH₃-pretreated catalyst (1.0 g); 1 pulse of benzene + O_2 (He/ O_2 /benzene = 81.4/12.0/6.6 (mol%)).

ⁱ Impregnation catalyst.

^j Physical mixing of MTO and HZSM-5.

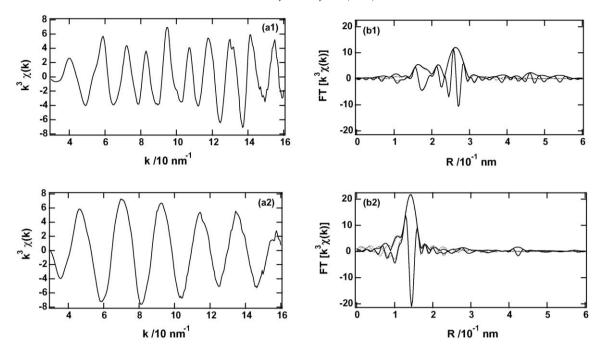
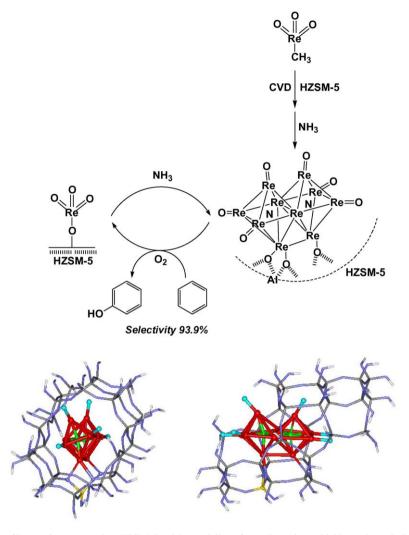
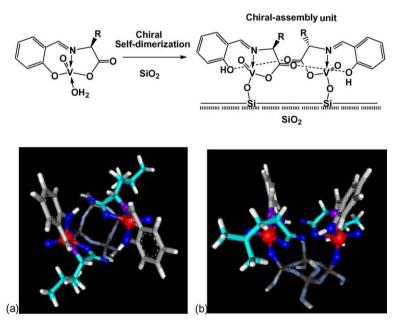


Fig. 1. Re $L_{\rm III}$ -edge EXAFS oscillations (a) and their associated Fourier transforms (b) measured at 15 K for the NH₃-treated Re-CVD/HZSM-5 catalyst (1) and the Re-CVD/HZSM-5 catalyst after the four pulse reactions with benzene and O_2 (2). The solid and dotted lines in the right FT represent absolute and imaginary parts of observed and fitted spectra, respectively.

the active Re-cluster framework is not active for the selective benzene oxidation. In the pulse reaction on 1.0 g of the NH₃-pretreated catalyst the conversion of benzene to phenol increased to 9.9% (TOF: $86.1 \times 10^{-5} \text{ s}^{-1}$), while keeping a high phenol selectivity of 90.6% as shown in Table 1.


After the four pulse reactions with a mixture of benzene and O_2 , the Re species showed no Re–Re bond, while Re=O and Re–O bonds were observed at 0.173 ± 0.001 nm (CN = 3.7 ± 0.2) and at 0.213 ± 0.003 nm (CN = 1.3 ± 0.7) as shown in Fig. 1. The XPS Re 4f peak was observed at 48.5 eV. These results demonstrate that the Re $_{10}$ clusters were oxidized with O_2 and decomposed to inactive ReO4-monomers with Re $^{7+}$ as shown in Scheme 1. The ReO4-monomers were transformed to the Re $_{10}$ clusters by NH $_3$. The formation and decomposition of the cluster are balancing in the steady-state reaction.

3.2. Chiral self-dimerized V-dimer on SiO_2 for asymmetric oxidative coupling of 2-naphthol


The oxidative coupling of 2-naphthol is a representative reaction mode for a direct synthesis of 1,1'-binaphthol (BINOL) whose optically pure derivatives are regarded as versatile chiral auxiliaries and ligands in asymmetric syntheses [31]. Nevertheless only a few studies have been reported for the asymmetric coupling of 2-naphthols in homogeneous systems [32–34]. We have found novel chiral self-dimerization of V-monomers on a SiO₂ surface [2,3]. The obtained V-dimer is highly enantioselective for the asymmetric oxidative coupling of 2-naphthol, 96% conversion, 100% selectivity to BINOL and 90% enantioselectivity, though the V-monomer is inactive for the coupling. To our knowledge, this is the first heterogeneous catalyst for the asymmetric coupling reaction.

Several V-monomer precursors with Schiff-base obtained from α -amino acids (L-valine, L-isoleucine, L-leucine, L-tert-leucine and L-phenylalanine) selectively reacted with surface silanols leading to a structural reconstruction of the tridentate Schiff-ligand coordination sphere characterized by ESR, XPS, UV-vis, FT-IR, XAFS and DFT calculations. The Ph–O moiety of the Schiff-base ligand transformed to Ph–OH configuration via selective reaction with surface Si-OH and the coordination number of V–O(N) single bonds analyzed by EXAFS reduced from 3.8 to 2.8 on the surface. Thus, the V-monomers convert to a coordinatively unsaturated metal conformation on the SiO₂ surface (Scheme 2), which can behave as an active site for the coordination of 2-naphthol.

Fig. 2 shows ESR spectra at 6 K for the L-leucine Vmonomer precursor and the supported L-leucine V complex in the presence and absence of O2. The hyperfine signals of the supported complex $(g_{\parallel} = 1.948, A_{\parallel} = 17.01 \text{ cm}^{-1}; g_{\perp} = 1.991,$ $A_{\perp} = 6.49 \text{ cm}^{-1}$) and the relationship between the hyperfine coupling constants $(g_{\parallel} < g_{\perp} \text{ and } A_{\parallel} \gg A_{\perp})$ demonstrate an axially compressed d_{xy}^{-1} configuration of a V=O complex. Furthermore, a broad peak was observed on the hyperfine signals and it greatly increased after the adsorption of O₂ as shown in Fig. 2(B). The peak was accompanied with the appearance of a new peak attributed to the half-band of $|\Delta Ms| = 2(C)$. The results demonstrate that another V complex is located near a V complex to form a dimer assembly. The V-V distance in the V-dimer produced by self-assembly on the surface is estimated to be $0.40 \pm 0.05 \, \text{nm}$ by the relative intensity of the forbidden half-field transition ($|\Delta Ms| = 2$) to the allowed transition ($|\Delta Ms| = 1$) [8]. After evacuation of the O₂adsorbed sample, the intensity returns completely to the original one and the change in the ESR signal occurs reversibly.

Scheme 1. Structural transformations of Re species supported on HZSM-5 and the modeling of an active *N*-interstitial Re₁₀ cluster inside the pore of HZSM-5 by DFT.

Scheme 2. Formation of the self-dimerized chiral assembly from vanadium-monomers on a SiO_2 surface. The modeled structures ((a) top view and (b) side view) of a chiral self-dimerized V complex were calculated by DFT.

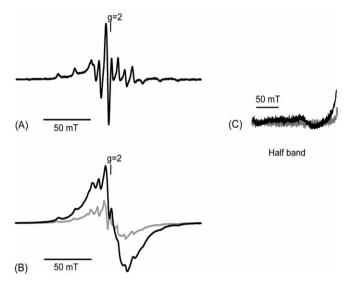


Fig. 2. ESR spectra for the SiO_2 -supported V-dimer (V 3.4 wt%) in the absence (gray) and presence (black) of O_2 at 6 K. (A) Main signal of L-leucine V-monomer; (B) main signal of the supported V-dimer catalyst; (C) half-band signal of the supported V-dimer catalyst.

This reversible adsorption of O_2 molecules means that the supported V catalyst possesses capacity for O_2 activation that is indispensable for the oxidative coupling reaction. The broad ESR signal and the reversible behavior of oxygen molecules

were observed similarly in the range of V loading 0.3–3.4 wt%, indicating that the chiral self-dimerization of the V precursors occurs independent of V loading on the SiO₂ surface.

The Ph–OH moiety formed by the surface reaction makes hydrogen bonding with the C=O group of the ligand to assemble the supported V complexes on the surface. Indeed, a difference (232 cm $^{-1}$) in the frequencies of $\nu_{\rm asym(COO)}$ and $\nu_{\rm sym(COO)}$ in FT-IR spectrum indicates the occurrence of hydrogen bonding at the C=O oxygen. The hydrogen bonding between Ph–OH and C=O is responsible for the V complex dimerization. We have performed modeling by the DFT calculations for the self-assembled V complex based on the characterization of the V assembly on the surface, whose structure is presented in Scheme 2. Two V=O bonds are directed to the opposite sides mutually from the principal molecular plane of the V complex and molecular oxygen and 2-naphthol are activated in a chiral space between the two unsaturated V centers.

We have found that the supported V catalyst is highly active for the coupling of 2-naphthol under aerobic conditions (Table 2). On the SiO_2 -supported V catalysts, the conversion reaches maximum 96% and the reaction rate in toluene is higher than that in CHCl $_3$. The supported V catalyst is perfectly selective (100% selectivity) and reusable for the BINOL synthesis as shown in Table 2. The homogeneous V precursor

Table 2
Catalytic performances of V-monomer precursors and oxide-supported V catalysts for the asymmetric oxidative coupling of 2-naphthol

Catalyst-V wt%	Temp. (K)	Time (day)	Solvent	Conv. (%)	Selectivity (%)	ee (R) (%)
Precursor ^a	293	5	CHCl ₃	0	0	_
Precursor ^{a,b}	293	3	CHCl ₃	15	73	8
Precursor ^{a,b}	263	9	CHCl ₃	0	0	_
SiO ₂ -0.3 ^c	293	2	Toluene	26	100	12
SiO ₂ -0.3 ^c	293	5	Toluene	99	100	5
SiO ₂ -0.3 ^c	263	6	Toluene	12	100	14
SiO ₂ -0.3 ^d	263	5	CHCl ₃	6	100	51
SiO ₂ -0.3 ^d	293	2	Toluene	41	100	21
SiO ₂ -0.3 ^e	263	5	CHCl ₃	9	100	56
SiO ₂ -0.3 ^f	293	2	Toluene	40	100	13
SiO ₂ -0.3 ^f	263	6	Toluene	9	100	31
SiO_2 - 0.3^g	263	5	Toluene	11	100	12
SiO ₂ -0.3	293	5	CHCl ₃	76	100	19
SiO ₂ -0.3	263	5	CHCl ₃	9	100	54
SiO ₂ -0.3	293	5	Toluene	96	100	13
SiO ₂ -0.3	263	5	Toluene	11	100	32
SiO ₂ -0.3 ^h	263	5	Toluene	10	100	33
SiO ₂ -0.8	263	5	Toluene	33	100	39
SiO ₂ -1.6	263	5	Toluene	42	100	48
SiO ₂ -3.4	263	11	Toluene	93	100	90
SiO ₂ -3.4 ^h	263	11	Toluene	91	100	89
Al ₂ O ₃ -1.7	293	5	CHCl ₃	69	53	-2
TiO ₂ -0.8	293	5	CHCl ₃	52	0	_

All the reactions were performed in 5 ml of solvent. Catalyst amount (supported catalyst) is 100 mg and 1 wt% corresponds to 9.8×10^{-6} mol of V-dimer, while the molar ratio V/reactant is always 1/36. Ligand: L-leucine.

^a Homogeneous reaction.

^b In the presence of chlorotrimethylsilane.

c L-valine.

d L-isoleucine.

e L-phenylalanine.

f Hydroxy naphthaldehyde was used instead of salicylaldehyde.

g L-tert-leucine.

h Reuse.

itself is inactive for the reaction. The V complexes supported on Al_2O_3 and TiO_2 are not selective for the coupling (Table 2).

The kind of the ligands gives less effect on the enantioselectivity for the oxidative coupling and thus the L-leucinebased catalysts were used for detailed investigation of the catalytic performances. Accompanied with an increase in V loading (0.3–3.4 wt%), enantioselectivity remarkably increases as shown in Table 2. The highest enantio excess (ee) 90% was achieved on the supported 3.4 wt%-V catalyst. This ee is equivalent to the highest values reported thus far for the oxidative coupling of simple 2-naphthol without functional groups on its naphthyl ring in homogeneous systems [34(c)]. From the estimation of the cross section of the V precursor, the V loading of 3.4 wt% corresponds to a full coverage of the complex on the SiO₂ surface, where the configuration and reaction environment of the V-dimer on the surface are regulated rigidly for the achievement of the high enantioselectivity compared to the lower V loadings.

4. Conclusions

We prepared and characterized metal-ensemble units on surfaces for selective oxidation. The novel N-interstitial Re₁₀ cluster was found to be active for highly selective benzene oxidation to phenol with molecular oxygen, on which the remarkably high selectivity of 82.4% at 5.8% conversion in the steady state. There was an unsurmounted wall of 5% conversion and 50% selectivity in the direct phenol synthesis from benzene with molecular oxygen. The present performances are beyond those values. Chiral self-assembly of V Schiff-base complexes on SiO₂ was also found to provide a novel SiO₂-supported chiral V-dimer, which exhibited enantioselective catalysis for 2-naphthol oxidative coupling. The SiO₂-supported V catalyst exhibited 100% selectivity for the BINOL synthesis and the highest enantioselectivity 90% was accomplished on the fullcoverage V catalyst. This is the first heterogeneous catalyst with active self-assembly structure for the asymmetric oxidative coupling of 2-naphthol.

Acknowledgement

The XAFS measurements were performed with the approval of the Photon Factory advisory committee (PAC) (Nos. 2003G092 and 2004G080). This study was performed with the support of the 21st Century COE program by the Ministry of Education, Culture, Sports, Science and Technology.

References

- R. Bal, M. Tada, T. Sasaki, Y. Iwasawa, Angew. Chem. Int. Ed. 34 (2006) 1362
- [2] M. Tada, T. Taniike, L.M. Kantam, Y. Iwasawa, Chem. Commun. (2004) 2542.

- [3] M. Tada, N. Kojima, Y. Izumi, T. Taniike, Y. Iwasawa, J. Phys. Chem. B 109 (2005) 9905.
- [4] R.J. Argatter, M. Kensington, G.R. Landolt, N.J. Audubon, US 3,702,886 (1972)
- [5] L.J. Theriot, G.O. Carlisle, H.J. Hu, J. Inorg. Nucl. Chem. 31 (1969) 2841
- [6] E.A. Stern, M. Newville, B. Ravel, Y. Yacoby, D. Haskel, Phys. B 208 (1995) 117.
- [7] A.L. Ankudinov, B. Ravel, J. Rehr, S.D. Conradson, Phys. Rev. B 58 (1998) 7565.
- [8] S.S. Eaton, K.M. More, B.M. Sawant, G.R. Eaton, J. Am. Chem. Soc. 105 (1983) 6560.
- [9] M. Velayutham, B. Varghese, S. Subramanian, Inorg. Chem. 37 (1998) 1336.
- [10] J.G. Forrest, C.K. Prout, J. Chem. Soc. Sect. A (1967) 1312.
- [11] R.E. Tapscott, R.L. Belford, Inorg. Chem. 6 (1967) 735.
- [12] Y.J. Seo, Y. Mukai, T. Tagawa, S. Goto, J. Mol. Catal. A: Chem. 120 (1997) 149.
- [13] T. Miyahara, H. Kanazaki, R. Hamada, S. Kuroiwa, S. Nishiyama, S. Tsuruya, J. Mol. Catal. A: Chem. 176 (2001) 141.
- [14] H. Yamanaka, R. Hamada, H. Nibuta, S. Nishiyama, Tsuruya, J. Mol. Catal. A: Chem. 178 (2002) 89.
- [15] T. Kusakari, T. Sasaki, Y. Iwasawa, Chem. Commun. (2004) 992.
- [16] Y.J. Seo, T. Tagawa, S. Goto, J. Chem. Eng. Jpn. 27 (1994) 307.
- [17] D.H. Bremner, A.E. Burgess, F.B. Li, Appl. Catal. A: Gen. 203 (2000) 111.
- [18] G.I. Panov, G.A. Sheveleva, A.S. Kharitonov, V.N. Romannikov, L.A. Vostrikova, Appl. Catal. A: Gen. 82 (1992) 31.
- [19] G.I. Panov, CATTECH 4 (2000) 18.
- [20] J.L. Motz, H. Heinichen, W.F. Hölderich, J. Mol. Catal. A: Chem. 136 (1998) 175.
- [21] W.F. Hölderich, Catal. Today 62 (2000) 115.
- [22] G. Centi, C. Genovese, G. Giordano, A. Katovic, S. Perathoner, Catal. Today 91 (2004) 17.
- [23] E.J.M. Hensen, O. Zhu, R.A. van Santen, J. Catal. 233 (2005) 136.
- [24] F. Kollmer, H. Harsmann, W.F. Hölderich, J. Catal. 227 (2004) 398.
- [25] E.J.M. Hensen, Q. Zhu, R.A. van Santen, J. Catal. 220 (2003) 260.
- [26] S. Niwa, M. Eswaramoorthy, J. Nair, A. Raj, N. Itoh, H. Shoji, T. Namba, F. Mizukami, Science 295 (2002) 105.
- [27] H. Ehrich, H. Berndt, M. Pohl, K. Jähnisch, M. Baerns, Appl. Catal. A: Gen. 230 (2002) 271.
- [28] M. Tani, T. Sakamoto, S. Mita, S. Sakaguchi, Y. Ishii, Angew. Chem. Int. Ed. 44 (2005) 2.
- [29] T. Dong, J. Li, F. Huang, L. Wang, J. Tu, Y. Torimoto, M. Sadakata, Q. Li, Chem. Commun. (2005) 2724.
- [30] N. Viswanadham, T. Shido, T. Sasaki, Y. Iwasawa, J. Phys. Chem. B 106 (2002) 10955.
- [31] (a) L. Pu, Chem. Rev. 98 (1998) 2405;
 - (b) R. Noyori, Asymmetric Catalysis in the Organic Synthesis, Wiley, New York, 1994.
- [32] (a) M. Nakajima, I. Miyoshi, K. Kanayama, S. Hashimoto, J. Org. Chem. 64 (1999) 2264:
 - (b) X. Lin, J. Yang, M.C. Kozlowski, Org. Lett. 3 (2001) 1137;
 - (c) J. Gao, J.H. Reibenspies, A.E. Martell, Angew. Chem. Int. Ed. 42 (2003) 6008.
- [33] R. Irie, K. Masutani, T. Katsuki, Synlett (2000) 1433.
- [34] (a) C.Y. Chu, D.R. Hwang, S.K. Wang, B.J. Uang, Chem. Commun. (2001) 980;
 - (b) S.W. Hon, C.H. Li, J.H. Kuo, N.B. Barhate, Y.H. Liu, Y. Wang, C.T. Chen, Org. Lett. 3 (2001) 869;
 - (c) Z. Luo, Q. Liu, L. Gong, X. Cui, A. Mi, Y. Jiang, Angew. Chem. Int. Ed. 41 (2002) 4532;
 - (d) H. Somei, Y. Asano, T. Yoshida, S. Takizawa, H. Yamataka, H. Sasaki, Tetrahedron Lett. 45 (2004) 1841.